The generator matrix

 1  0  0  1  1  1  1  1  1  1  1 2X X+3  1  1  0 X+3  6 2X+3  1  1  1  1  1  1  1  3  1  1  1  1  0  X  1  1  1  1  1  0  1  1  1  1  1 X+3  1  1 2X+6  1  1 2X+6  3  1  6  1  1 X+3  1  1  1  X  1  1  1
 0  1  0  0  6 2X+4 2X+4  1 2X+2  8 X+8  1  1 2X+2 2X+5 2X+6  1  1  1 X+7 X+1 2X 2X 2X+8 X+3 X+7  1 X+2 X+7 X+2 2X+3  0  1 2X+7 2X+8  X  X 2X+1  1  6 2X+5 X+2 2X+7  5  1  8 2X+3  1 2X+4 X+1  1  1  6  1  1 2X+4  1 X+3 X+7  4  1  5 2X+8  3
 0  0  1  1  2  2 2X+3  1 2X+2  X 2X+1 X+1 2X+2 X+5  0  1 X+4 X+3 2X+5 X+6  4 X+7 2X+3  4 X+8 X+5  6  5 X+7 X+1 2X+4  1 2X+1  0 X+6 2X+8 2X+6 2X+5  2 X+1 X+7 X+2  8  3 X+2 2X+3 2X+6 2X+1  0  5 2X+8 2X 2X+7  3 X+4 X+6  0 X+8  8  8  X  4 2X  6
 0  0  0 2X  3  6  0 2X+6 X+3  X  3  0  3  3 2X+3 2X+3 2X+6 X+6 X+6 2X+6  3 X+3  X  X X+6 2X 2X+3 2X  X 2X+3  0 X+6 X+3 X+6  6 2X 2X+6 X+3 2X 2X 2X+6  6 2X+3  6 2X  0 2X+6  0 2X+6 X+6  6 X+3 X+3 2X 2X  3  6  6  3 2X+6 2X+6 2X+3 2X  6

generates a code of length 64 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 117.

Homogenous weight enumerator: w(x)=1x^0+244x^117+366x^118+1290x^119+3204x^120+3906x^121+5628x^122+8018x^123+9294x^124+12216x^125+14770x^126+17010x^127+18432x^128+19474x^129+16872x^130+14988x^131+12534x^132+8148x^133+5088x^134+3184x^135+1164x^136+576x^137+338x^138+42x^139+66x^140+130x^141+36x^142+30x^143+62x^144+18x^145+6x^146+6x^147+6x^148

The gray image is a code over GF(3) with n=576, k=11 and d=351.
This code was found by Heurico 1.16 in 60.2 seconds.